Разделы
Таблицы
Краткий курс по химии
Биографии химиков
Вещества
Статьи
Программы
Великие химики
Музей
Опыты
Опыты для дома
Анекдоты
Области химии
Органическая
Агрохимия
Геохимия
Экохимия
Аналитическая
Фотохимия
Термохимия
Нефтехимия
Таблицы
Таблица Менделеева
Таблица растворимости
Открытие элементов
Распространенность элементов
Кислотно-основные индикаторы
Термодинамические константы
Растворимость твердых веществ
Растворимость не твердых веществ
Тривиальные названия вещест
Состав воздуха
Энергии ионизации атомов
Энтальпии испарения
Энтальпии испарения-2
Температуры кипения
Температуры кипения-2
Температуры плавления
Температуры плавления-2
Частоты ЯМР для ядер
Плотности в твердом состоянии
Плотности в твердом состоянии-2
Красители E-100 - E-199
Консерванты E-200 - E-299
Антиоксиданты E-300 - E-399
Стабилизаторы E-400 - E-599
Усилители E-600 - E-699
Антифламинги E-900 - E-999
Информация
Изобретения
Ссылки

Периодическая система элементов Менделеева - As

As 33

Мышьяк

to кип. (oС) Степ.окис. +5 +3 -3

74,9215

to плав.(oС) 817 (под давлением) Плотность 5727(серый) 4900(черный)
4s24p3 ОЭО 2,11 в зем. коре 0,00017 %

Наш рассказ об элементе не очень распространенном, но достаточно широко известном; об элементе, свойства которого до несовместимости противоречивы. Так же трудно совместить и роли, которые играл и играет этот элемент в жизни человечества. В разное время, в разных обстоятельствах, в разном виде он выступает как яд и как целительное средство, как вредный и опасный отход производства, как компонент полезнейших, незаменимых веществ. Итак, элемент с атомным номером 33.

История в тезисах

Поскольку мышьяк относится к числу элементов, точная дата открытия которых не установлена, ограничимся констатацией лишь нескольких достоверных фактов:

известен мышьяк с глубокой древности;

в трудах Диоскорида (I век н. э.) упоминается о прокаливании вещества, которое сейчас называют сернистым мышьяком;

в III—IV веке в отрывочных записях, приписываемых Зозимосу, есть упоминание о металлическом мышьяке; у греческого писателя Олимпиодоруса (V век н. э.) описано изготовление белого мышьяка обжигом сульфида;

в VIII веке арабский алхимик Гебер получил трехокись мышьяка;

в средние века люди начали сталкиваться с трехокисью мышьяка при переработке мышьяксодержащих руд, и белый дым газообразного Аs2О3 получил название рудного дыма;

получение свободного металлического мышьяка приписывают немецкому алхимику Альберту фон Больштедту и относят примерно к 1250 году, хотя греческие и арабские алхимики бесспорно получали мышьяк (нагреванием его трехокиси с органическими веществами) раньше Больштедта;

в 1733 году доказано, что белый мышьяк — это окись металлического мышьяка;

в 1760 году француз Луи Клод Каде получил первое органическое соединение мышьяка, известное как жидкость Каде или окись «какодила»; формула этого вещества [(CH3)2A]2O;

 

в 1775 году Карл Вильгельм Шееле получил мышьяковистую кислоту и мышьяковистый водород;

в 1789 году Антуан Лоран Лавуазье признал мышьяк самостоятельным химическим элементом.

Элементарный мышьяк — серебристо-серое или оловянно-белое вещество, в свежем изломе обладающее

металлическим блеском. Но на воздухе он быстро тускнеет. При нагревании выше 600° С мышьяк возгоняется, не плавясь, а под давлением 37 атм плавится при 818° С. Мышьяк — единственный металл, у которого температура кипения при нормальном давлении лежит ниже точки плавления.

 

 

Мышьяк — яд

В сознании многих слова «яд» и «мышьяк» идентичны. Так уж сложилось исторически. Известны рассказы о ядах Клеопатры. В Риме славились яды Локусты. Обычным орудием устранения политических и прочих противников яд был также в средневековых итальянских республиках. В Венеции, например, при дворе держали специалистов-отравителей. И главным компонентом почти всех ядов был мышьяк.

В России закон, запрещающий отпускать частным лицам «купоросное и янтарное масло, крепкую водку, мышьяк и цилибуху», был издан еще в царствование Анны Иоанновны — в январе 1733 года. Закон был чрезвычайно строг и гласил: «Кто впредь тем мышьяком и прочими вышеозначенными материалы торговать станут и с тем пойманы или на кого донесено будет, тем и учинено будет жестокое наказание и сосланы имеют в ссылку без всякия пощады, тож учинено будет и тем, которые мимо аптек и ратуш у кого покупать будут. А ежели кто, купя таковые ядовитые материалы, чинить будет повреждение людям, таковые по розыску не токмо истязаны, но и смертию казнены будут, смотря по важности дела неотменно».

На протяжении веков соединения мышьяка привлекали (да и сейчас продолжают привлекать) внимание фармацевтов, токсикологов и судебных экспертов.

Узнавать отравление мышьяком криминалисты научились безошибочно. Если в желудке отравленных находят белые фарфоровидные крупинки, то первым делом возникает подозрение на мышьяковистый ангидрид Аs2О3. Эти крупинки вместе с кусочками угля помещают в стеклянную трубку, запаивают ее и нагревают. Если в трубке есть As2O3, то на холодных частях трубки появляется серо-черное блестящее кольцо металлического мышьяка.

После охлаждения конец трубки отламывают, уголь удаляют, а серо-черное кольцо нагревают. При этом кольцо перегоняется к свободному концу трубки, давая белый налет мышьяковистого ангидрида. Реакции здесь такие:

As2O3 + ЗС == As2 + ЗСО

или

2As2O3 + ЗС = 2AS2 + ЗСО2;

2As2+3O2==2As2O3.

 

Полученный белый налет помещают под микроскоп: уже при малом увеличении видны характерные блестящие кристаллы в виде октаэдров.

Мышьяк обладает способностью долго сохраняться в одном месте. Поэтому при судебно-химических исследованиях в лабораторию доставляют образцы земли, взятой из шести участков возле места захоронения человека, которого могли отравить, а также части его одежды, украшения, доски гроба.

 

Симптомы мышьяковистого отравления — металлический вкус во рту, рвота, сильные боли в животе. Позже судороги, паралич, смерть. Наиболее известное и общедоступное противоядие при отравлении мышьяком — молоко, точнее, главный белок молока казеин, образующий с мышьяком нерастворимое соединение, не всасывающееся в кровь.

Мышьяк в форме неорганических препаратов смертелен в дозах 0,05—0,1 г, и тем не менее мышьяк присутствует во всех растительных и животных организмах. (Это доказано французским ученым Орфила еще в 1838 году.) Морские растительные и животные организмы содержат в среднем стотысячные, а пресноводные и наземные — миллионные доли процента мышьяка. Микрочастицы мышьяка усваиваются и клетками человеческого организма, элемент № 33 содержится в крови, тканях и органах; особенно много его в печени — от 2 до 12 мг на 1 кг веса. Ученые предполагают, что микродозы мышьяка повышают устойчивость организма к действию вредных микробов.

 

 

Мышьяк — лекарство

Врачи констатируют, что кариес зубов в наше время — самая распространенная болезнь. Трудно найти человека, у которого нет хотя бы одного пломбированного зуба. Болезнь начинается с разрушения известковых солей зубной эмали, и тогда начинают свое гадкое дело болезнетворные микробы. Проникая сквозь ослабевшую броню зуба, они атакуют его более мягкую внутреннюю часть. Образуется «кариозная полость», и если посчастливится оказаться у зубного врача на этой стадии, можно отделаться сравнительно легко: кариозная полость будет очищена и заполнена пломбировочным материалом, а зуб останется живым. Но если вовремя не обратиться к врачу, кариозная полость доходит до пульпы—ткани, содержащей нервы, кровеносные и лимфатические сосуды. Начинается ее воспаление, и тогда врач, во избежание худшего, решает убить нерв. Подается команда: «мышьяк!», и на обнаженную инструментом пульпу кладут крупинку пасты величиной с булавочную головку. Мышьяковистая кислота, входящая в состав этой пасты, быстро диффундирует в пульпу (боль, которая при этом ощущается, не что иное, как «последний крик» умирающей пульпы), и через 24—48 часов все кончено — зуб мертв. Теперь врач может безболезненно удалить пульпу и заполнить пульповую камеру и корневые каналы антисептической пастой, а «дырку» запломбировать.

Не только в стоматологии пользуются мышьяком и его соединениями. Всемирную известность приобрел сальварсан, 606-й препарат Пауля Эрлиха — немецкого врача, открывшего в начале XX века первое эффективное средство борьбы с люэсом. Это действительно был 606-й из испытанных Эрлихом мышьяковистых препаратов. Первоначально этому желтому аморфному порошку приписывали формулу

 

Лишь в 50-х годах, когда сальварсан уже перестали применять как средство против люэса, малярии, возвратного тифа, советский ученый М. Я. Крафт установил его истинную формулу. Оказалось, что сальварсан имеет полимерное строение

 

Величина п в зависимости от способа получения может колебаться от 8 до 40.

На смену сальварсану пришли другие мышьяковистые препараты, более эффективные и менее токсичные, в частности его производные: новарсенол, миарсенол и др.

Используют в медицинской практике и некоторые неорганические соединения мышьяка. Мышьяковистый ангидрид As2O3, арсенит калия KAsO2, гидроарсенат натрия Na2HAsO4 • 7Н2О ( в минимальных дозах, разумеется) тормозят окислительные процессы в организме, усиливают кроветворение. Те же вещества — как наружное — назначают при некоторых кожных заболеваниях. Именно, мышьяку и его соединениям приписывают целебное действие некоторых минеральных вод.

Думаем, что приведенных примеров достаточно для подтверждения тезиса, заключенного в названии этой главы.

Мышьяк — оружие уничтожения

Вновь приходится возращаться к смертоносным свойствам элемента № 33. Не секрет, что его широко использовали, а возможно и сейчас используют, в производстве химического оружия, не менее преступного, чем ядерное. Об этом свидетельствует опыт первой мировой войны. О том же говорят просочившиеся в печать сведения о применении войсками империалистических государств отравляющих веществ в Абиссинии (Италия), Китае (Япония), Корее и Южном Вьетнаме (США).

Соединения мышьяка входят во все основные группы известных боевых отравляющих веществ (0В). Среди 0В общеядовитого действия — арсин, мышьяковистый водород АsН3 (заметим попутно, что соединения трехвалентного мышьяка более ядовиты, чей соединения, в которых мышьяк пятивалентен). Это самое ядовитое из всех соединений мышьяк достаточно истечение получаса подышать воздухом, в литре которого содержится 0,00005 г AsH3, чтобы через несколько дней отправиться на тот свет. Концентрация AsH3 0,005г/л убивает мгновенно. Считают, что биохимический механиз действия- АsН3 состоит в том, что его молекулы «блокируют» молекулы фермента эритроцитов — каталазы; из-за этого в крови накапливается перекись водорода, разрушаящая кровь. Активированный уголь сорбирует арсин слабо, поэтому против арсина обычный противогаз не защитник.

В годы первой мировой войны были попытки применит арсин, но летучесть и неустойчивость этого веществ, помогли избежать его массового применения. Сейчас к сожалению, технические возможности для длительного заражения местности арсином есть. Он образуется при реакции арсенидов некоторых металлов с водой. Да и сами арсениды опасны для людей и животных, американские войска во Вьетнаме доказали это. . . Арсениды многих металлов тоже следовало бы отнести к числу ОВ общего действия.

Другая большая группа отравляющих веществ — вещества раздражающего действия —почти целиком состоит из соединений мышьяка. Ее типичные представители дифенилхлорарсин (C6H5)2AsCl и дифенилцианарсин (C6H5)2AsCN.

 

Вещества этой группы избирательно действуют на нервные окончания слизистых оболочек — главным образом оболочек верхних дыхательных путей. Это вызывает рефлекторную реакцию организма освободиться от раздражителя, чихая или кашляя. В отличие от слезоточивых ОВ эти вещества даже при легком отравлении действуют и после того, как пораженный выбрался из отравленной атмосферы. В течение нескольких часов человека сотрясает мучительный кашель, появляется боль в груди и в голове, начинают непроизвольно течь слезы. Плюс к этому рвота, одышка, чувство страха; все это доводит до совершенного изнурения. И вдобавок эти вещества вызывают общее отравление организма»

Среди отравляющих веществ кожно-нарывного действия — люизит, реагирующий с сульфогидрильными SH-группами ферментов и нарушающий ход многих: биохимических процессов. Впитываясь через кожу, люизит вызывает общее отравление организма. Это обстоятельство в свое время дало повод американцам рекламировать люизит под названием «роса смерти».

Но хватит об этом. Человечество живет надеждой, что отравляющие вещества, о которых мы рассказали (и еще многие им подобные), никогда больше не будут использованы.

Мышьяк — стимулятор технического прогресса

Самая перспективная область применения мышьяка несомненно полупроводниковая техника. Особое значение приобрели в ней арсениды галлия GaAs и индия InAs. Арсенид галлия важен также для нового направления электронной техники — оптоэлектроники, возникшей в 1963—1965 годах на стыке физики твердого тела, оптики и электроники. Этот же материал помог создать первые полупроводниковые лазеры.

Почему арсениды оказались перспективными для полупроводниковой техники? Чтобы ответить на этот вопрос, напомним коротко о некоторых основных понятиях физики полупроводников: «валентная зона», «запрещенная зона» и «зона проводимости».

В отличие от свободного электрона, который может обладать любой энергией, электрон, заключенный в атоме, может обладать только некоторыми, вполне определенными значениями энергии. Из возможных значений энергии электронов в атоме складываются энергетические зоны. В силу известного принципа Паули, число электронов в каждой зоне не может быть больше некоего определенного максимума. Если зона пуста, то она, естественно, не может участвовать в создании проводимости. Не участвуют в проводимости и электроны целиком заполненной зоны: раз нет свободных уровней, внешнее электрическое поле не может вызывать перераспределения электронов и тем самым создать электрический ток. Проводимость возможна лишь в частично заполненной зоне. Поэтому тела с частично заполненной зоной относят к металлам, а тела, у которых энергетический спектр электронных состоянии состоит из заполненных и пустых зон, — к диэлектрикам или полупроводникам.

Напомним также, что целиком заполненные зоны в кристаллах называются валентными зонами, частично заполненные и пустые — зонами проводимости, а энергетический интервал (или барьер) между ними — запрещенной зоной,

Основное различие между диэлектриками и полупроводниками состоит именно в ширине запрещенной зоны: если для преодоления ее нужна энергия больше 3 электронвольт, то кристалл относят к диэлектрикам, а если меньше — к полупроводникам.

По сравнению с классическими полупроводниками IV группы — германием и кремнием — арсениды элементов III группы обладают двумя преимуществами. Ширину запрещенной зоны и подвижность носителей заряда в них можно варьировать в более широких пределах. А чем подвижнее носители заряда, тем при больших частотах может работать полупроводниковый прибор. Ширину запрещенной зоны выбирают в зависимости от назначения прибора. Так, для выпрямителей и усилителей, рассчитанных на работу при повышенной температуре, применяют материал с большой шириной запрещенной зоны, а для охлаждаемых приемников инфракрасного излучения — с малой.

Арсенид галлия приобрел особую популярность потому, что у него хорошие электрические характеристики, которые он сохраняет в широком интервале температур — от минусовых до плюс 500° С. Для сравнения укажем, что арсенид индия, не уступающий GaAs по электрическим свойствам, начинает терять их при комнатной температуре, соединения германия — при 70—80°, а кремния — при 150-200° С.

Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа (см. статью «Германий»). При этом в полупроводнике создается так называемый переходный слой, и в зависимости от назначения кристалла его легируют так, чтобы получить слой на различной глубине. В кристаллах, предназначенных для изготовления диодов, его «прячут» поглубже; если же из полупроводниковых кристаллов будут делать солнечные батареи, то глубина переходного слоя — не более одного микрона.

Мышьяк как ценную присадку используют в цветной металлургии. Так, добавка к свинцу 0,2—l%As значительно повышает его твердость. Дробь, например, всегда делают из свинца, легированного мышьяком — иначе не получить строго шарообразной формы дробинок.

Добавка 0,15—0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки.

Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов.

И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса — лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды:

во-первых, для здоровья людей, во-вторых, для металла — значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Таков элемент № 33, заслуженно пользующийся скверной репутацией, и тем не менее во многих случаях очень полезный.

* О двух типах проводимости подробно расскавано в статье «Германий».

Назад    На главную страницу


Поддержите сайт, поставте на нас ссылку.

Пример ссылкиКод ссылки
Мир химии
Выбрать другой баннер...
 
Администратор
Hosted by uCoz